/* This file is part of the dynarmic project. * Copyright (c) 2020 MerryMage * SPDX-License-Identifier: 0BSD */ #include "common/bit_util.h" #include "frontend/A32/translate/impl/translate_arm.h" namespace Dynarmic::A32 { namespace { enum class Comparison { GE, GT, EQ, AbsoluteGE, AbsoluteGT, }; enum class AccumulateBehavior { None, Accumulate, }; template bool BitwiseInstruction(ArmTranslatorVisitor& v, bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm, Callable fn) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return v.UndefinedInstruction(); } const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); if constexpr (WithDst) { const IR::U128 reg_d = v.ir.GetVector(d); const IR::U128 reg_m = v.ir.GetVector(m); const IR::U128 reg_n = v.ir.GetVector(n); const IR::U128 result = fn(reg_d, reg_n, reg_m); v.ir.SetVector(d, result); } else { const IR::U128 reg_m = v.ir.GetVector(m); const IR::U128 reg_n = v.ir.GetVector(n); const IR::U128 result = fn(reg_n, reg_m); v.ir.SetVector(d, result); } return true; } template bool FloatingPointInstruction(ArmTranslatorVisitor& v, bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm, Callable fn) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return v.UndefinedInstruction(); } if (sz == 0b1) { return v.UndefinedInstruction(); } const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_d = v.ir.GetVector(d); const auto reg_n = v.ir.GetVector(n); const auto reg_m = v.ir.GetVector(m); const auto result = fn(reg_d, reg_n, reg_m); v.ir.SetVector(d, result); return true; } bool IntegerComparison(ArmTranslatorVisitor& v, bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm, Comparison comparison) { if (sz == 0b11) { return v.UndefinedInstruction(); } if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return v.UndefinedInstruction(); } const size_t esize = 8 << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_n = v.ir.GetVector(n); const auto reg_m = v.ir.GetVector(m); const auto result = [&] { switch (comparison) { case Comparison::GT: return U ? v.ir.VectorGreaterUnsigned(esize, reg_n, reg_m) : v.ir.VectorGreaterSigned(esize, reg_n, reg_m); case Comparison::GE: return U ? v.ir.VectorGreaterEqualUnsigned(esize, reg_n, reg_m) : v.ir.VectorGreaterEqualSigned(esize, reg_n, reg_m); case Comparison::EQ: return v.ir.VectorEqual(esize, reg_n, reg_m); default: return IR::U128{}; } }(); v.ir.SetVector(d, result); return true; } bool FloatComparison(ArmTranslatorVisitor& v, bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm, Comparison comparison) { if (sz) { return v.UndefinedInstruction(); } if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return v.UndefinedInstruction(); } const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_n = v.ir.GetVector(n); const auto reg_m = v.ir.GetVector(m); const auto result = [&] { switch (comparison) { case Comparison::GE: return v.ir.FPVectorGreaterEqual(32, reg_n, reg_m, false); case Comparison::GT: return v.ir.FPVectorGreater(32, reg_n, reg_m, false); case Comparison::EQ: return v.ir.FPVectorEqual(32, reg_n, reg_m, false); case Comparison::AbsoluteGE: return v.ir.FPVectorGreaterEqual(32, v.ir.FPVectorAbs(32, reg_n), v.ir.FPVectorAbs(32, reg_m), false); case Comparison::AbsoluteGT: return v.ir.FPVectorGreater(32, v.ir.FPVectorAbs(32, reg_n), v.ir.FPVectorAbs(32, reg_m), false); default: return IR::U128{}; } }(); v.ir.SetVector(d, result); return true; } bool AbsoluteDifference(ArmTranslatorVisitor& v, bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm, AccumulateBehavior accumulate) { if (sz == 0b11) { return v.UndefinedInstruction(); } if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return v.UndefinedInstruction(); } const size_t esize = 8U << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_m = v.ir.GetVector(m); const auto reg_n = v.ir.GetVector(n); const auto result = [&] { const auto absdiff = U ? v.ir.VectorUnsignedAbsoluteDifference(esize, reg_m, reg_n) : v.ir.VectorSignedAbsoluteDifference(esize, reg_m, reg_n); if (accumulate == AccumulateBehavior::Accumulate) { const auto reg_d = v.ir.GetVector(d); return v.ir.VectorAdd(esize, reg_d, absdiff); } return absdiff; }(); v.ir.SetVector(d, result); return true; } } // Anonymous namespace bool ArmTranslatorVisitor::asimd_VHADD(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } if (sz == 0b11) { return UndefinedInstruction(); } const size_t esize = 8 << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const IR::U128 reg_n = ir.GetVector(n); const IR::U128 reg_m = ir.GetVector(m); const IR::U128 result = U ? ir.VectorHalvingAddUnsigned(esize, reg_n, reg_m) : ir.VectorHalvingAddSigned(esize, reg_n, reg_m); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VQADD(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } if (sz == 0b11) { return UndefinedInstruction(); } const size_t esize = 8 << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const IR::U128 reg_n = ir.GetVector(n); const IR::U128 reg_m = ir.GetVector(m); const IR::U128 result = U ? ir.VectorUnsignedSaturatedAdd(esize, reg_n, reg_m) : ir.VectorSignedSaturatedAdd(esize, reg_n, reg_m); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VRHADD(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } if (sz == 0b11) { return UndefinedInstruction(); } const size_t esize = 8 << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const IR::U128 reg_n = ir.GetVector(n); const IR::U128 reg_m = ir.GetVector(m); const IR::U128 result = U ? ir.VectorRoundingHalvingAddUnsigned(esize, reg_n, reg_m) : ir.VectorRoundingHalvingAddSigned(esize, reg_n, reg_m); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VAND_reg(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return BitwiseInstruction(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_n, const auto& reg_m) { return ir.VectorAnd(reg_n, reg_m); }); } bool ArmTranslatorVisitor::asimd_VBIC_reg(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return BitwiseInstruction(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_n, const auto& reg_m) { return ir.VectorAnd(reg_n, ir.VectorNot(reg_m)); }); } bool ArmTranslatorVisitor::asimd_VORR_reg(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return BitwiseInstruction(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_n, const auto& reg_m) { return ir.VectorOr(reg_n, reg_m); }); } bool ArmTranslatorVisitor::asimd_VORN_reg(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return BitwiseInstruction(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_n, const auto& reg_m) { return ir.VectorOr(reg_n, ir.VectorNot(reg_m)); }); } bool ArmTranslatorVisitor::asimd_VEOR_reg(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return BitwiseInstruction(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_n, const auto& reg_m) { return ir.VectorEor(reg_n, reg_m); }); } bool ArmTranslatorVisitor::asimd_VBSL(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return BitwiseInstruction(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_d, const auto& reg_n, const auto& reg_m) { return ir.VectorOr(ir.VectorAnd(reg_n, reg_d), ir.VectorAnd(reg_m, ir.VectorNot(reg_d))); }); } bool ArmTranslatorVisitor::asimd_VBIT(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return BitwiseInstruction(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_d, const auto& reg_n, const auto& reg_m) { return ir.VectorOr(ir.VectorAnd(reg_n, reg_m), ir.VectorAnd(reg_d, ir.VectorNot(reg_m))); }); } bool ArmTranslatorVisitor::asimd_VBIF(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return BitwiseInstruction(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_d, const auto& reg_n, const auto& reg_m) { return ir.VectorOr(ir.VectorAnd(reg_d, reg_m), ir.VectorAnd(reg_n, ir.VectorNot(reg_m))); }); } bool ArmTranslatorVisitor::asimd_VHSUB(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } if (sz == 0b11) { return UndefinedInstruction(); } const size_t esize = 8 << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const IR::U128 reg_n = ir.GetVector(n); const IR::U128 reg_m = ir.GetVector(m); const IR::U128 result = U ? ir.VectorHalvingSubUnsigned(esize, reg_n, reg_m) : ir.VectorHalvingSubSigned(esize, reg_n, reg_m); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VQSUB(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } if (sz == 0b11) { return UndefinedInstruction(); } const size_t esize = 8 << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const IR::U128 reg_n = ir.GetVector(n); const IR::U128 reg_m = ir.GetVector(m); const IR::U128 result = U ? ir.VectorUnsignedSaturatedSub(esize, reg_n, reg_m) : ir.VectorSignedSaturatedSub(esize, reg_n, reg_m); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VCGT_reg(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return IntegerComparison(*this, U, D, sz, Vn, Vd, N, Q, M, Vm, Comparison::GT); } bool ArmTranslatorVisitor::asimd_VCGE_reg(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return IntegerComparison(*this, U, D, sz, Vn, Vd, N, Q, M, Vm, Comparison::GE); } bool ArmTranslatorVisitor::asimd_VABD(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return AbsoluteDifference(*this, U, D, sz, Vn, Vd, N, Q, M, Vm, AccumulateBehavior::None); } bool ArmTranslatorVisitor::asimd_VABA(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return AbsoluteDifference(*this, U, D, sz, Vn, Vd, N, Q, M, Vm, AccumulateBehavior::Accumulate); } bool ArmTranslatorVisitor::asimd_VADD_int(bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const size_t esize = 8U << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_m = ir.GetVector(m); const auto reg_n = ir.GetVector(n); const auto result = ir.VectorAdd(esize, reg_m, reg_n); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VSUB_int(bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const size_t esize = 8U << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_m = ir.GetVector(m); const auto reg_n = ir.GetVector(n); const auto result = ir.VectorSub(esize, reg_n, reg_m); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VSHL_reg(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const size_t esize = 8U << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_m = ir.GetVector(m); const auto reg_n = ir.GetVector(n); const auto result = U ? ir.VectorLogicalVShift(esize, reg_m, reg_n) : ir.VectorArithmeticVShift(esize, reg_m, reg_n); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VQSHL_reg(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const size_t esize = 8U << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_m = ir.GetVector(m); const auto reg_n = ir.GetVector(n); const auto result = U ? ir.VectorUnsignedSaturatedShiftLeft(esize, reg_m, reg_n) : ir.VectorSignedSaturatedShiftLeft(esize, reg_m, reg_n); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VRSHL(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const size_t esize = 8U << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_m = ir.GetVector(m); const auto reg_n = ir.GetVector(n); const auto result = U ? ir.VectorRoundingShiftLeftUnsigned(esize, reg_m, reg_n) : ir.VectorRoundingShiftLeftSigned(esize, reg_m, reg_n); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VMAX(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, bool op, size_t Vm) { if (sz == 0b11) { return UndefinedInstruction(); } if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const size_t esize = 8U << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_m = ir.GetVector(m); const auto reg_n = ir.GetVector(n); const auto result = [&] { if (op) { return U ? ir.VectorMinUnsigned(esize, reg_m, reg_n) : ir.VectorMinSigned(esize, reg_m, reg_n); } else { return U ? ir.VectorMaxUnsigned(esize, reg_m, reg_n) : ir.VectorMaxSigned(esize, reg_m, reg_n); } }(); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VTST(bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } if (sz == 0b11) { return UndefinedInstruction(); } const size_t esize = 8 << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_n = ir.GetVector(n); const auto reg_m = ir.GetVector(m); const auto anded = ir.VectorAnd(reg_n, reg_m); const auto result = ir.VectorNot(ir.VectorEqual(esize, anded, ir.ZeroVector())); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VCEQ_reg(bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return IntegerComparison(*this, false, D, sz, Vn, Vd, N, Q, M, Vm, Comparison::EQ); } bool ArmTranslatorVisitor::asimd_VMLA(bool op, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (sz == 0b11) { return UndefinedInstruction(); } if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const size_t esize = 8U << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_n = ir.GetVector(n); const auto reg_m = ir.GetVector(m); const auto reg_d = ir.GetVector(d); const auto multiply = ir.VectorMultiply(esize, reg_m, reg_n); const auto result = op ? ir.VectorSub(esize, reg_d, multiply) : ir.VectorAdd(esize, reg_d, multiply); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VMUL(bool P, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (sz == 0b11 || (P && sz != 0b00)) { return UndefinedInstruction(); } if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const size_t esize = 8U << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_n = ir.GetVector(n); const auto reg_m = ir.GetVector(m); const auto result = P ? ir.VectorPolynomialMultiply(reg_m, reg_n) : ir.VectorMultiply(esize, reg_m, reg_n); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VPADD(bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { if (Q || sz == 0b11) { return UndefinedInstruction(); } const size_t esize = 8U << sz; const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto n = ToVector(Q, Vn, N); const auto reg_n = ir.GetVector(n); const auto reg_m = ir.GetVector(m); const auto result = ir.VectorPairedAddLower(esize, reg_n, reg_m); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VADD_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) { return ir.FPVectorAdd(32, reg_n, reg_m, false); }); } bool ArmTranslatorVisitor::asimd_VSUB_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) { return ir.FPVectorSub(32, reg_n, reg_m, false); }); } bool ArmTranslatorVisitor::asimd_VPADD_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this, Q](const auto&, const auto& reg_n, const auto& reg_m) { return Q ? ir.FPVectorPairedAdd(32, reg_n, reg_m, false) : ir.FPVectorPairedAddLower(32, reg_n, reg_m, false); }); } bool ArmTranslatorVisitor::asimd_VABD_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) { return ir.FPVectorAbs(32, ir.FPVectorSub(32, reg_n, reg_m, false)); }); } bool ArmTranslatorVisitor::asimd_VMLA_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_d, const auto& reg_n, const auto& reg_m) { const auto product = ir.FPVectorMul(32, reg_n, reg_m, false); return ir.FPVectorAdd(32, reg_d, product, false); }); } bool ArmTranslatorVisitor::asimd_VMLS_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_d, const auto& reg_n, const auto& reg_m) { const auto product = ir.FPVectorMul(32, reg_n, reg_m, false); return ir.FPVectorAdd(32, reg_d, ir.FPVectorNeg(32, product), false); }); } bool ArmTranslatorVisitor::asimd_VMUL_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) { return ir.FPVectorMul(32, reg_n, reg_m, false); }); } bool ArmTranslatorVisitor::asimd_VCEQ_reg_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatComparison(*this, D, sz, Vn, Vd, N, Q, M, Vm, Comparison::EQ); } bool ArmTranslatorVisitor::asimd_VCGE_reg_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatComparison(*this, D, sz, Vn, Vd, N, Q, M, Vm, Comparison::GE); } bool ArmTranslatorVisitor::asimd_VCGT_reg_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatComparison(*this, D, sz, Vn, Vd, N, Q, M, Vm, Comparison::GT); } bool ArmTranslatorVisitor::asimd_VACGE(bool D, bool op, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { const auto comparison = op ? Comparison::AbsoluteGT : Comparison::AbsoluteGE; return FloatComparison(*this, D, sz, Vn, Vd, N, Q, M, Vm, comparison); } bool ArmTranslatorVisitor::asimd_VMAX_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) { return ir.FPVectorMax(32, reg_n, reg_m, false); }); } bool ArmTranslatorVisitor::asimd_VMIN_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) { return ir.FPVectorMin(32, reg_n, reg_m, false); }); } bool ArmTranslatorVisitor::asimd_VRECPS(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) { return ir.FPVectorRecipStepFused(32, reg_n, reg_m, false); }); } bool ArmTranslatorVisitor::asimd_VRSQRTS(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) { return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) { return ir.FPVectorRSqrtStepFused(32, reg_n, reg_m, false); }); } } // namespace Dynarmic::A32