dynarmic/src/frontend/A32/translate/impl/asimd_three_same.cpp
2020-06-21 20:21:53 +01:00

766 lines
28 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2020 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include "common/bit_util.h"
#include "frontend/A32/translate/impl/translate_arm.h"
namespace Dynarmic::A32 {
namespace {
enum class Comparison {
GE,
GT,
EQ,
AbsoluteGE,
AbsoluteGT,
};
enum class AccumulateBehavior {
None,
Accumulate,
};
template <bool WithDst, typename Callable>
bool BitwiseInstruction(ArmTranslatorVisitor& v, bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm, Callable fn) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return v.UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
if constexpr (WithDst) {
const IR::U128 reg_d = v.ir.GetVector(d);
const IR::U128 reg_m = v.ir.GetVector(m);
const IR::U128 reg_n = v.ir.GetVector(n);
const IR::U128 result = fn(reg_d, reg_n, reg_m);
v.ir.SetVector(d, result);
} else {
const IR::U128 reg_m = v.ir.GetVector(m);
const IR::U128 reg_n = v.ir.GetVector(n);
const IR::U128 result = fn(reg_n, reg_m);
v.ir.SetVector(d, result);
}
return true;
}
template <typename Callable>
bool FloatingPointInstruction(ArmTranslatorVisitor& v, bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm, Callable fn) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return v.UndefinedInstruction();
}
if (sz == 0b1) {
return v.UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_d = v.ir.GetVector(d);
const auto reg_n = v.ir.GetVector(n);
const auto reg_m = v.ir.GetVector(m);
const auto result = fn(reg_d, reg_n, reg_m);
v.ir.SetVector(d, result);
return true;
}
bool IntegerComparison(ArmTranslatorVisitor& v, bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm,
Comparison comparison) {
if (sz == 0b11) {
return v.UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return v.UndefinedInstruction();
}
const size_t esize = 8 << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_n = v.ir.GetVector(n);
const auto reg_m = v.ir.GetVector(m);
const auto result = [&] {
switch (comparison) {
case Comparison::GT:
return U ? v.ir.VectorGreaterUnsigned(esize, reg_n, reg_m)
: v.ir.VectorGreaterSigned(esize, reg_n, reg_m);
case Comparison::GE:
return U ? v.ir.VectorGreaterEqualUnsigned(esize, reg_n, reg_m)
: v.ir.VectorGreaterEqualSigned(esize, reg_n, reg_m);
case Comparison::EQ:
return v.ir.VectorEqual(esize, reg_n, reg_m);
default:
return IR::U128{};
}
}();
v.ir.SetVector(d, result);
return true;
}
bool FloatComparison(ArmTranslatorVisitor& v, bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm,
Comparison comparison) {
if (sz) {
return v.UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return v.UndefinedInstruction();
}
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_n = v.ir.GetVector(n);
const auto reg_m = v.ir.GetVector(m);
const auto result = [&] {
switch (comparison) {
case Comparison::GE:
return v.ir.FPVectorGreaterEqual(32, reg_n, reg_m, false);
case Comparison::GT:
return v.ir.FPVectorGreater(32, reg_n, reg_m, false);
case Comparison::EQ:
return v.ir.FPVectorEqual(32, reg_n, reg_m, false);
case Comparison::AbsoluteGE:
return v.ir.FPVectorGreaterEqual(32, v.ir.FPVectorAbs(32, reg_n), v.ir.FPVectorAbs(32, reg_m), false);
case Comparison::AbsoluteGT:
return v.ir.FPVectorGreater(32, v.ir.FPVectorAbs(32, reg_n), v.ir.FPVectorAbs(32, reg_m), false);
default:
return IR::U128{};
}
}();
v.ir.SetVector(d, result);
return true;
}
bool AbsoluteDifference(ArmTranslatorVisitor& v, bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm,
AccumulateBehavior accumulate) {
if (sz == 0b11) {
return v.UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return v.UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_m = v.ir.GetVector(m);
const auto reg_n = v.ir.GetVector(n);
const auto result = [&] {
const auto absdiff = U ? v.ir.VectorUnsignedAbsoluteDifference(esize, reg_m, reg_n)
: v.ir.VectorSignedAbsoluteDifference(esize, reg_m, reg_n);
if (accumulate == AccumulateBehavior::Accumulate) {
const auto reg_d = v.ir.GetVector(d);
return v.ir.VectorAdd(esize, reg_d, absdiff);
}
return absdiff;
}();
v.ir.SetVector(d, result);
return true;
}
bool AbsoluteDifferenceLong(ArmTranslatorVisitor& v, bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool M, size_t Vm,
AccumulateBehavior accumulate) {
if (sz == 0b11) {
return v.UndefinedInstruction();
}
if (Common::Bit<0>(Vd)) {
return v.UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(true, Vd, D);
const auto m = ToVector(false, Vm, M);
const auto n = ToVector(false, Vn, N);
const auto reg_m = v.ir.GetVector(m);
const auto reg_n = v.ir.GetVector(n);
const auto operand_m = v.ir.VectorZeroExtend(esize, v.ir.ZeroExtendToQuad(v.ir.VectorGetElement(64, reg_m, 0)));
const auto operand_n = v.ir.VectorZeroExtend(esize, v.ir.ZeroExtendToQuad(v.ir.VectorGetElement(64, reg_n, 0)));
const auto result = [&] {
const auto absdiff = U ? v.ir.VectorUnsignedAbsoluteDifference(esize, operand_m, operand_n)
: v.ir.VectorSignedAbsoluteDifference(esize, operand_m, operand_n);
if (accumulate == AccumulateBehavior::Accumulate) {
const auto reg_d = v.ir.GetVector(d);
return v.ir.VectorAdd(2 * esize, reg_d, absdiff);
}
return absdiff;
}();
v.ir.SetVector(d, result);
return true;
}
} // Anonymous namespace
bool ArmTranslatorVisitor::asimd_VHADD(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
if (sz == 0b11) {
return UndefinedInstruction();
}
const size_t esize = 8 << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const IR::U128 reg_n = ir.GetVector(n);
const IR::U128 reg_m = ir.GetVector(m);
const IR::U128 result = U ? ir.VectorHalvingAddUnsigned(esize, reg_n, reg_m) : ir.VectorHalvingAddSigned(esize, reg_n, reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VQADD(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
if (sz == 0b11) {
return UndefinedInstruction();
}
const size_t esize = 8 << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const IR::U128 reg_n = ir.GetVector(n);
const IR::U128 reg_m = ir.GetVector(m);
const IR::U128 result = U ? ir.VectorUnsignedSaturatedAdd(esize, reg_n, reg_m) : ir.VectorSignedSaturatedAdd(esize, reg_n, reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VRHADD(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
if (sz == 0b11) {
return UndefinedInstruction();
}
const size_t esize = 8 << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const IR::U128 reg_n = ir.GetVector(n);
const IR::U128 reg_m = ir.GetVector(m);
const IR::U128 result = U ? ir.VectorRoundingHalvingAddUnsigned(esize, reg_n, reg_m) : ir.VectorRoundingHalvingAddSigned(esize, reg_n, reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VAND_reg(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return BitwiseInstruction<false>(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_n, const auto& reg_m) {
return ir.VectorAnd(reg_n, reg_m);
});
}
bool ArmTranslatorVisitor::asimd_VBIC_reg(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return BitwiseInstruction<false>(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_n, const auto& reg_m) {
return ir.VectorAnd(reg_n, ir.VectorNot(reg_m));
});
}
bool ArmTranslatorVisitor::asimd_VORR_reg(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return BitwiseInstruction<false>(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_n, const auto& reg_m) {
return ir.VectorOr(reg_n, reg_m);
});
}
bool ArmTranslatorVisitor::asimd_VORN_reg(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return BitwiseInstruction<false>(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_n, const auto& reg_m) {
return ir.VectorOr(reg_n, ir.VectorNot(reg_m));
});
}
bool ArmTranslatorVisitor::asimd_VEOR_reg(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return BitwiseInstruction<false>(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_n, const auto& reg_m) {
return ir.VectorEor(reg_n, reg_m);
});
}
bool ArmTranslatorVisitor::asimd_VBSL(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return BitwiseInstruction<true>(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_d, const auto& reg_n, const auto& reg_m) {
return ir.VectorOr(ir.VectorAnd(reg_n, reg_d), ir.VectorAnd(reg_m, ir.VectorNot(reg_d)));
});
}
bool ArmTranslatorVisitor::asimd_VBIT(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return BitwiseInstruction<true>(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_d, const auto& reg_n, const auto& reg_m) {
return ir.VectorOr(ir.VectorAnd(reg_n, reg_m), ir.VectorAnd(reg_d, ir.VectorNot(reg_m)));
});
}
bool ArmTranslatorVisitor::asimd_VBIF(bool D, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return BitwiseInstruction<true>(*this, D, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_d, const auto& reg_n, const auto& reg_m) {
return ir.VectorOr(ir.VectorAnd(reg_d, reg_m), ir.VectorAnd(reg_n, ir.VectorNot(reg_m)));
});
}
bool ArmTranslatorVisitor::asimd_VHSUB(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
if (sz == 0b11) {
return UndefinedInstruction();
}
const size_t esize = 8 << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const IR::U128 reg_n = ir.GetVector(n);
const IR::U128 reg_m = ir.GetVector(m);
const IR::U128 result = U ? ir.VectorHalvingSubUnsigned(esize, reg_n, reg_m) : ir.VectorHalvingSubSigned(esize, reg_n, reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VQSUB(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
if (sz == 0b11) {
return UndefinedInstruction();
}
const size_t esize = 8 << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const IR::U128 reg_n = ir.GetVector(n);
const IR::U128 reg_m = ir.GetVector(m);
const IR::U128 result = U ? ir.VectorUnsignedSaturatedSub(esize, reg_n, reg_m) : ir.VectorSignedSaturatedSub(esize, reg_n, reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VCGT_reg(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return IntegerComparison(*this, U, D, sz, Vn, Vd, N, Q, M, Vm, Comparison::GT);
}
bool ArmTranslatorVisitor::asimd_VCGE_reg(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return IntegerComparison(*this, U, D, sz, Vn, Vd, N, Q, M, Vm, Comparison::GE);
}
bool ArmTranslatorVisitor::asimd_VABD(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return AbsoluteDifference(*this, U, D, sz, Vn, Vd, N, Q, M, Vm, AccumulateBehavior::None);
}
bool ArmTranslatorVisitor::asimd_VABDL(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool M, size_t Vm) {
return AbsoluteDifferenceLong(*this, U, D, sz, Vn, Vd, N, M, Vm, AccumulateBehavior::None);
}
bool ArmTranslatorVisitor::asimd_VABA(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return AbsoluteDifference(*this, U, D, sz, Vn, Vd, N, Q, M, Vm, AccumulateBehavior::Accumulate);
}
bool ArmTranslatorVisitor::asimd_VABAL(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool M, size_t Vm) {
return AbsoluteDifferenceLong(*this, U, D, sz, Vn, Vd, N, M, Vm, AccumulateBehavior::Accumulate);
}
bool ArmTranslatorVisitor::asimd_VADD_int(bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_m = ir.GetVector(m);
const auto reg_n = ir.GetVector(n);
const auto result = ir.VectorAdd(esize, reg_m, reg_n);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VSUB_int(bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_m = ir.GetVector(m);
const auto reg_n = ir.GetVector(n);
const auto result = ir.VectorSub(esize, reg_n, reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VSHL_reg(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_m = ir.GetVector(m);
const auto reg_n = ir.GetVector(n);
const auto result = U ? ir.VectorLogicalVShift(esize, reg_m, reg_n)
: ir.VectorArithmeticVShift(esize, reg_m, reg_n);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VQSHL_reg(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_m = ir.GetVector(m);
const auto reg_n = ir.GetVector(n);
const auto result = U ? ir.VectorUnsignedSaturatedShiftLeft(esize, reg_m, reg_n)
: ir.VectorSignedSaturatedShiftLeft(esize, reg_m, reg_n);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VRSHL(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_m = ir.GetVector(m);
const auto reg_n = ir.GetVector(n);
const auto result = U ? ir.VectorRoundingShiftLeftUnsigned(esize, reg_m, reg_n)
: ir.VectorRoundingShiftLeftSigned(esize, reg_m, reg_n);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VMAX(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, bool op, size_t Vm) {
if (sz == 0b11) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_m = ir.GetVector(m);
const auto reg_n = ir.GetVector(n);
const auto result = [&] {
if (op) {
return U ? ir.VectorMinUnsigned(esize, reg_m, reg_n)
: ir.VectorMinSigned(esize, reg_m, reg_n);
} else {
return U ? ir.VectorMaxUnsigned(esize, reg_m, reg_n)
: ir.VectorMaxSigned(esize, reg_m, reg_n);
}
}();
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VTST(bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
if (sz == 0b11) {
return UndefinedInstruction();
}
const size_t esize = 8 << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_n = ir.GetVector(n);
const auto reg_m = ir.GetVector(m);
const auto anded = ir.VectorAnd(reg_n, reg_m);
const auto result = ir.VectorNot(ir.VectorEqual(esize, anded, ir.ZeroVector()));
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VCEQ_reg(bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return IntegerComparison(*this, false, D, sz, Vn, Vd, N, Q, M, Vm, Comparison::EQ);
}
bool ArmTranslatorVisitor::asimd_VMLA(bool op, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (sz == 0b11) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_n = ir.GetVector(n);
const auto reg_m = ir.GetVector(m);
const auto reg_d = ir.GetVector(d);
const auto multiply = ir.VectorMultiply(esize, reg_m, reg_n);
const auto result = op ? ir.VectorSub(esize, reg_d, multiply)
: ir.VectorAdd(esize, reg_d, multiply);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VMLAL(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool op, bool N, bool M, size_t Vm) {
if (sz == 0b11) {
return UndefinedInstruction();
}
if (Common::Bit<0>(Vd)) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(true, Vd, D);
const auto m = ToVector(false, Vm, M);
const auto n = ToVector(false, Vn, N);
const auto extend_reg = [&](const auto& reg) {
return U ? ir.VectorZeroExtend(esize, reg)
: ir.VectorSignExtend(esize, reg);
};
const auto reg_d = ir.GetVector(d);
const auto reg_n = ir.GetVector(n);
const auto reg_m = ir.GetVector(m);
const auto multiply = ir.VectorMultiply(2 * esize, extend_reg(reg_n), extend_reg(reg_m));
const auto result = op ? ir.VectorSub(2 * esize, reg_d, multiply)
: ir.VectorAdd(2 * esize, reg_d, multiply);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VMUL(bool P, bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (sz == 0b11 || (P && sz != 0b00)) {
return UndefinedInstruction();
}
if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vn) || Common::Bit<0>(Vm))) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_n = ir.GetVector(n);
const auto reg_m = ir.GetVector(m);
const auto result = P ? ir.VectorPolynomialMultiply(reg_m, reg_n)
: ir.VectorMultiply(esize, reg_m, reg_n);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VMULL(bool U, bool D, size_t sz, size_t Vn, size_t Vd, bool P, bool N, bool M, size_t Vm) {
if (sz == 0b11 || (P & (U || sz == 0b10)) || Common::Bit<0>(Vd)) {
return UndefinedInstruction();
}
const size_t esize = P ? (sz == 0b00 ? 8 : 64) : 8U << sz;
const auto d = ToVector(true, Vd, D);
const auto m = ToVector(false, Vm, M);
const auto n = ToVector(false, Vn, N);
const auto extend_reg = [&](const auto& reg) {
return U ? ir.VectorZeroExtend(esize, reg) : ir.VectorSignExtend(esize, reg);
};
const auto reg_n = ir.GetVector(n);
const auto reg_m = ir.GetVector(m);
const auto result = P ? ir.VectorPolynomialMultiplyLong(esize, reg_m, reg_n)
: ir.VectorMultiply(2 * esize, extend_reg(reg_m), extend_reg(reg_n));
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VPADD(bool D, size_t sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
if (Q || sz == 0b11) {
return UndefinedInstruction();
}
const size_t esize = 8U << sz;
const auto d = ToVector(Q, Vd, D);
const auto m = ToVector(Q, Vm, M);
const auto n = ToVector(Q, Vn, N);
const auto reg_n = ir.GetVector(n);
const auto reg_m = ir.GetVector(m);
const auto result = ir.VectorPairedAddLower(esize, reg_n, reg_m);
ir.SetVector(d, result);
return true;
}
bool ArmTranslatorVisitor::asimd_VFMA(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_d, const auto& reg_n, const auto& reg_m) {
return ir.FPVectorMulAdd(32, reg_d, reg_n, reg_m, false);
});
}
bool ArmTranslatorVisitor::asimd_VFMS(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_d, const auto& reg_n, const auto& reg_m) {
return ir.FPVectorMulAdd(32, reg_d, ir.FPVectorNeg(32, reg_n), reg_m, false);
});
}
bool ArmTranslatorVisitor::asimd_VADD_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) {
return ir.FPVectorAdd(32, reg_n, reg_m, false);
});
}
bool ArmTranslatorVisitor::asimd_VSUB_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) {
return ir.FPVectorSub(32, reg_n, reg_m, false);
});
}
bool ArmTranslatorVisitor::asimd_VPADD_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this, Q](const auto&, const auto& reg_n, const auto& reg_m) {
return Q ? ir.FPVectorPairedAdd(32, reg_n, reg_m, false)
: ir.FPVectorPairedAddLower(32, reg_n, reg_m, false);
});
}
bool ArmTranslatorVisitor::asimd_VABD_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) {
return ir.FPVectorAbs(32, ir.FPVectorSub(32, reg_n, reg_m, false));
});
}
bool ArmTranslatorVisitor::asimd_VMLA_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_d, const auto& reg_n, const auto& reg_m) {
const auto product = ir.FPVectorMul(32, reg_n, reg_m, false);
return ir.FPVectorAdd(32, reg_d, product, false);
});
}
bool ArmTranslatorVisitor::asimd_VMLS_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto& reg_d, const auto& reg_n, const auto& reg_m) {
const auto product = ir.FPVectorMul(32, reg_n, reg_m, false);
return ir.FPVectorAdd(32, reg_d, ir.FPVectorNeg(32, product), false);
});
}
bool ArmTranslatorVisitor::asimd_VMUL_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) {
return ir.FPVectorMul(32, reg_n, reg_m, false);
});
}
bool ArmTranslatorVisitor::asimd_VCEQ_reg_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatComparison(*this, D, sz, Vn, Vd, N, Q, M, Vm, Comparison::EQ);
}
bool ArmTranslatorVisitor::asimd_VCGE_reg_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatComparison(*this, D, sz, Vn, Vd, N, Q, M, Vm, Comparison::GE);
}
bool ArmTranslatorVisitor::asimd_VCGT_reg_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatComparison(*this, D, sz, Vn, Vd, N, Q, M, Vm, Comparison::GT);
}
bool ArmTranslatorVisitor::asimd_VACGE(bool D, bool op, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
const auto comparison = op ? Comparison::AbsoluteGT : Comparison::AbsoluteGE;
return FloatComparison(*this, D, sz, Vn, Vd, N, Q, M, Vm, comparison);
}
bool ArmTranslatorVisitor::asimd_VMAX_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) {
return ir.FPVectorMax(32, reg_n, reg_m, false);
});
}
bool ArmTranslatorVisitor::asimd_VMIN_float(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) {
return ir.FPVectorMin(32, reg_n, reg_m, false);
});
}
bool ArmTranslatorVisitor::asimd_VRECPS(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) {
return ir.FPVectorRecipStepFused(32, reg_n, reg_m, false);
});
}
bool ArmTranslatorVisitor::asimd_VRSQRTS(bool D, bool sz, size_t Vn, size_t Vd, bool N, bool Q, bool M, size_t Vm) {
return FloatingPointInstruction(*this, D, sz, Vn, Vd, N, Q, M, Vm, [this](const auto&, const auto& reg_n, const auto& reg_m) {
return ir.FPVectorRSqrtStepFused(32, reg_n, reg_m, false);
});
}
} // namespace Dynarmic::A32