dynarmic/src/dynarmic/backend/x64/emit_x64_memory.cpp.inc
2022-07-14 08:58:00 +01:00

544 lines
19 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2022 MerryMage
* SPDX-License-Identifier: 0BSD
*/
#include <mcl/macro/concatenate_tokens.hpp>
#define AxxEmitX64 CONCATENATE_TOKENS(Axx, EmitX64)
#define AxxEmitContext CONCATENATE_TOKENS(Axx, EmitContext)
#define AxxJitState CONCATENATE_TOKENS(Axx, JitState)
#define AxxUserConfig Axx::UserConfig
namespace {
using Vector = std::array<u64, 2>;
}
std::optional<AxxEmitX64::DoNotFastmemMarker> AxxEmitX64::ShouldFastmem(AxxEmitContext& ctx, IR::Inst* inst) const {
if (!conf.fastmem_pointer || !exception_handler.SupportsFastmem()) {
return std::nullopt;
}
const auto marker = std::make_tuple(ctx.Location(), ctx.GetInstOffset(inst));
if (do_not_fastmem.count(marker) > 0) {
return std::nullopt;
}
return marker;
}
FakeCall AxxEmitX64::FastmemCallback(u64 rip_) {
const auto iter = fastmem_patch_info.find(rip_);
if (iter == fastmem_patch_info.end()) {
fmt::print("dynarmic: Segfault happened within JITted code at rip = {:016x}\n", rip_);
fmt::print("Segfault wasn't at a fastmem patch location!\n");
fmt::print("Now dumping code.......\n\n");
Common::DumpDisassembledX64((void*)(rip_ & ~u64(0xFFF)), 0x1000);
ASSERT_FALSE("iter != fastmem_patch_info.end()");
}
if (iter->second.recompile) {
const auto marker = iter->second.marker;
do_not_fastmem.emplace(marker);
InvalidateBasicBlocks({std::get<0>(marker)});
}
return FakeCall{
.call_rip = iter->second.callback,
.ret_rip = iter->second.resume_rip,
};
}
template<std::size_t bitsize, auto callback>
void AxxEmitX64::EmitMemoryRead(AxxEmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const bool ordered = IsOrdered(args[2].GetImmediateAccType());
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
if constexpr (bitsize == 128) {
ctx.reg_alloc.HostCall(nullptr, {}, args[1]);
if (ordered) {
code.mfence();
}
code.CallFunction(memory_read_128);
ctx.reg_alloc.DefineValue(inst, xmm1);
} else {
ctx.reg_alloc.HostCall(inst, {}, args[1]);
if (ordered) {
code.mfence();
}
Devirtualize<callback>(conf.callbacks).EmitCall(code);
code.ZeroExtendFrom(bitsize, code.ABI_RETURN);
}
EmitCheckMemoryAbort(ctx, inst);
return;
}
if (ordered && bitsize == 128) {
// Required for atomic 128-bit loads/stores
ctx.reg_alloc.ScratchGpr(HostLoc::RAX);
ctx.reg_alloc.ScratchGpr(HostLoc::RBX);
ctx.reg_alloc.ScratchGpr(HostLoc::RCX);
ctx.reg_alloc.ScratchGpr(HostLoc::RDX);
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[1]);
const int value_idx = bitsize == 128 ? ctx.reg_alloc.ScratchXmm().getIdx() : ctx.reg_alloc.ScratchGpr().getIdx();
const auto wrapped_fn = read_fallbacks[std::make_tuple(ordered, bitsize, vaddr.getIdx(), value_idx)];
SharedLabel abort = GenSharedLabel(), end = GenSharedLabel();
if (fastmem_marker) {
// Use fastmem
bool require_abort_handling;
const auto src_ptr = EmitFastmemVAddr(code, ctx, *abort, vaddr, require_abort_handling);
const auto location = EmitReadMemoryMov<bitsize>(code, value_idx, src_ptr, ordered);
ctx.deferred_emits.emplace_back([=, this, &ctx] {
code.L(*abort);
code.call(wrapped_fn);
fastmem_patch_info.emplace(
mcl::bit_cast<u64>(location),
FastmemPatchInfo{
mcl::bit_cast<u64>(code.getCurr()),
mcl::bit_cast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_fastmem_failure,
});
EmitCheckMemoryAbort(ctx, inst, end.get());
code.jmp(*end, code.T_NEAR);
});
} else {
// Use page table
ASSERT(conf.page_table);
const auto src_ptr = EmitVAddrLookup(code, ctx, bitsize, *abort, vaddr);
EmitReadMemoryMov<bitsize>(code, value_idx, src_ptr, ordered);
ctx.deferred_emits.emplace_back([=, this, &ctx] {
code.L(*abort);
code.call(wrapped_fn);
EmitCheckMemoryAbort(ctx, inst, end.get());
code.jmp(*end, code.T_NEAR);
});
}
code.L(*end);
if constexpr (bitsize == 128) {
ctx.reg_alloc.DefineValue(inst, Xbyak::Xmm{value_idx});
} else {
ctx.reg_alloc.DefineValue(inst, Xbyak::Reg64{value_idx});
}
}
template<std::size_t bitsize, auto callback>
void AxxEmitX64::EmitMemoryWrite(AxxEmitContext& ctx, IR::Inst* inst) {
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const bool ordered = IsOrdered(args[3].GetImmediateAccType());
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (!conf.page_table && !fastmem_marker) {
// Neither fastmem nor page table: Use callbacks
if constexpr (bitsize == 128) {
ctx.reg_alloc.Use(args[1], ABI_PARAM2);
ctx.reg_alloc.Use(args[2], HostLoc::XMM1);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(nullptr);
code.CallFunction(memory_write_128);
} else {
ctx.reg_alloc.HostCall(nullptr, {}, args[1], args[2]);
Devirtualize<callback>(conf.callbacks).EmitCall(code);
}
if (ordered) {
code.mfence();
}
EmitCheckMemoryAbort(ctx, inst);
return;
}
if (ordered && bitsize == 128) {
// Required for atomic 128-bit loads/stores
ctx.reg_alloc.ScratchGpr(HostLoc::RAX);
ctx.reg_alloc.ScratchGpr(HostLoc::RBX);
ctx.reg_alloc.ScratchGpr(HostLoc::RCX);
ctx.reg_alloc.ScratchGpr(HostLoc::RDX);
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[1]);
const int value_idx = bitsize == 128
? ctx.reg_alloc.UseXmm(args[2]).getIdx()
: (ordered ? ctx.reg_alloc.UseScratchGpr(args[2]).getIdx() : ctx.reg_alloc.UseGpr(args[2]).getIdx());
const auto wrapped_fn = write_fallbacks[std::make_tuple(ordered, bitsize, vaddr.getIdx(), value_idx)];
SharedLabel abort = GenSharedLabel(), end = GenSharedLabel();
if (fastmem_marker) {
// Use fastmem
bool require_abort_handling;
const auto dest_ptr = EmitFastmemVAddr(code, ctx, *abort, vaddr, require_abort_handling);
const auto location = EmitWriteMemoryMov<bitsize>(code, dest_ptr, value_idx, ordered);
ctx.deferred_emits.emplace_back([=, this, &ctx] {
code.L(*abort);
code.call(wrapped_fn);
fastmem_patch_info.emplace(
mcl::bit_cast<u64>(location),
FastmemPatchInfo{
mcl::bit_cast<u64>(code.getCurr()),
mcl::bit_cast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_fastmem_failure,
});
EmitCheckMemoryAbort(ctx, inst, end.get());
code.jmp(*end, code.T_NEAR);
});
} else {
// Use page table
ASSERT(conf.page_table);
const auto dest_ptr = EmitVAddrLookup(code, ctx, bitsize, *abort, vaddr);
EmitWriteMemoryMov<bitsize>(code, dest_ptr, value_idx, ordered);
ctx.deferred_emits.emplace_back([=, this, &ctx] {
code.L(*abort);
code.call(wrapped_fn);
EmitCheckMemoryAbort(ctx, inst, end.get());
code.jmp(*end, code.T_NEAR);
});
}
code.L(*end);
}
template<std::size_t bitsize, auto callback>
void AxxEmitX64::EmitExclusiveReadMemory(AxxEmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const bool ordered = IsOrdered(args[2].GetImmediateAccType());
if constexpr (bitsize != 128) {
using T = mcl::unsigned_integer_of_size<bitsize>;
ctx.reg_alloc.HostCall(inst, {}, args[1]);
code.mov(code.byte[r15 + offsetof(AxxJitState, exclusive_state)], u8(1));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
if (ordered) {
code.mfence();
}
code.CallLambda(
[](AxxUserConfig& conf, Axx::VAddr vaddr) -> T {
return conf.global_monitor->ReadAndMark<T>(conf.processor_id, vaddr, [&]() -> T {
return (conf.callbacks->*callback)(vaddr);
});
});
code.ZeroExtendFrom(bitsize, code.ABI_RETURN);
} else {
const Xbyak::Xmm result = ctx.reg_alloc.ScratchXmm();
ctx.reg_alloc.Use(args[1], ABI_PARAM2);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(nullptr);
code.mov(code.byte[r15 + offsetof(AxxJitState, exclusive_state)], u8(1));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
ctx.reg_alloc.AllocStackSpace(16 + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]);
if (ordered) {
code.mfence();
}
code.CallLambda(
[](AxxUserConfig& conf, Axx::VAddr vaddr, Vector& ret) {
ret = conf.global_monitor->ReadAndMark<Vector>(conf.processor_id, vaddr, [&]() -> Vector {
return (conf.callbacks->*callback)(vaddr);
});
});
code.movups(result, xword[rsp + ABI_SHADOW_SPACE]);
ctx.reg_alloc.ReleaseStackSpace(16 + ABI_SHADOW_SPACE);
ctx.reg_alloc.DefineValue(inst, result);
}
EmitCheckMemoryAbort(ctx, inst);
}
template<std::size_t bitsize, auto callback>
void AxxEmitX64::EmitExclusiveWriteMemory(AxxEmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor != nullptr);
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
const bool ordered = IsOrdered(args[3].GetImmediateAccType());
if constexpr (bitsize != 128) {
ctx.reg_alloc.HostCall(inst, {}, args[1], args[2]);
} else {
ctx.reg_alloc.Use(args[1], ABI_PARAM2);
ctx.reg_alloc.Use(args[2], HostLoc::XMM1);
ctx.reg_alloc.EndOfAllocScope();
ctx.reg_alloc.HostCall(inst);
}
Xbyak::Label end;
code.mov(code.ABI_RETURN, u32(1));
code.cmp(code.byte[r15 + offsetof(AxxJitState, exclusive_state)], u8(0));
code.je(end);
code.mov(code.byte[r15 + offsetof(AxxJitState, exclusive_state)], u8(0));
code.mov(code.ABI_PARAM1, reinterpret_cast<u64>(&conf));
if constexpr (bitsize != 128) {
using T = mcl::unsigned_integer_of_size<bitsize>;
code.CallLambda(
[](AxxUserConfig& conf, Axx::VAddr vaddr, T value) -> u32 {
return conf.global_monitor->DoExclusiveOperation<T>(conf.processor_id, vaddr,
[&](T expected) -> bool {
return (conf.callbacks->*callback)(vaddr, value, expected);
})
? 0
: 1;
});
if (ordered) {
code.mfence();
}
} else {
ctx.reg_alloc.AllocStackSpace(16 + ABI_SHADOW_SPACE);
code.lea(code.ABI_PARAM3, ptr[rsp + ABI_SHADOW_SPACE]);
code.movaps(xword[code.ABI_PARAM3], xmm1);
code.CallLambda(
[](AxxUserConfig& conf, Axx::VAddr vaddr, Vector& value) -> u32 {
return conf.global_monitor->DoExclusiveOperation<Vector>(conf.processor_id, vaddr,
[&](Vector expected) -> bool {
return (conf.callbacks->*callback)(vaddr, value, expected);
})
? 0
: 1;
});
if (ordered) {
code.mfence();
}
ctx.reg_alloc.ReleaseStackSpace(16 + ABI_SHADOW_SPACE);
}
code.L(end);
EmitCheckMemoryAbort(ctx, inst);
}
template<std::size_t bitsize, auto callback>
void AxxEmitX64::EmitExclusiveReadMemoryInline(AxxEmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor && conf.fastmem_pointer);
if (!exception_handler.SupportsFastmem()) {
EmitExclusiveReadMemory<bitsize, callback>(ctx, inst);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
constexpr bool ordered = true;
if constexpr (ordered && bitsize == 128) {
// Required for atomic 128-bit loads/stores
ctx.reg_alloc.ScratchGpr(HostLoc::RAX);
ctx.reg_alloc.ScratchGpr(HostLoc::RBX);
ctx.reg_alloc.ScratchGpr(HostLoc::RCX);
ctx.reg_alloc.ScratchGpr(HostLoc::RDX);
}
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[1]);
const int value_idx = bitsize == 128 ? ctx.reg_alloc.ScratchXmm().getIdx() : ctx.reg_alloc.ScratchGpr().getIdx();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
const Xbyak::Reg64 tmp2 = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = read_fallbacks[std::make_tuple(ordered, bitsize, vaddr.getIdx(), value_idx)];
EmitExclusiveLock(code, conf, tmp, tmp2.cvt32());
code.mov(code.byte[r15 + offsetof(AxxJitState, exclusive_state)], u8(1));
code.mov(tmp, mcl::bit_cast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, conf.processor_id)));
code.mov(qword[tmp], vaddr);
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (fastmem_marker) {
SharedLabel abort = GenSharedLabel(), end = GenSharedLabel();
bool require_abort_handling = false;
const auto src_ptr = EmitFastmemVAddr(code, ctx, *abort, vaddr, require_abort_handling);
const auto location = EmitReadMemoryMov<bitsize>(code, value_idx, src_ptr, ordered);
fastmem_patch_info.emplace(
mcl::bit_cast<u64>(location),
FastmemPatchInfo{
mcl::bit_cast<u64>(code.getCurr()),
mcl::bit_cast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_exclusive_fastmem_failure,
});
code.L(*end);
if (require_abort_handling) {
ctx.deferred_emits.emplace_back([=, this] {
code.L(*abort);
code.call(wrapped_fn);
code.jmp(*end, code.T_NEAR);
});
}
} else {
code.call(wrapped_fn);
}
code.mov(tmp, mcl::bit_cast<u64>(GetExclusiveMonitorValuePointer(conf.global_monitor, conf.processor_id)));
EmitWriteMemoryMov<bitsize>(code, tmp, value_idx, false);
EmitExclusiveUnlock(code, conf, tmp, tmp2.cvt32());
if constexpr (bitsize == 128) {
ctx.reg_alloc.DefineValue(inst, Xbyak::Xmm{value_idx});
} else {
ctx.reg_alloc.DefineValue(inst, Xbyak::Reg64{value_idx});
}
EmitCheckMemoryAbort(ctx, inst);
}
template<std::size_t bitsize, auto callback>
void AxxEmitX64::EmitExclusiveWriteMemoryInline(AxxEmitContext& ctx, IR::Inst* inst) {
ASSERT(conf.global_monitor && conf.fastmem_pointer);
if (!exception_handler.SupportsFastmem()) {
EmitExclusiveWriteMemory<bitsize, callback>(ctx, inst);
return;
}
auto args = ctx.reg_alloc.GetArgumentInfo(inst);
constexpr bool ordered = true;
const auto value = [&] {
if constexpr (bitsize == 128) {
ctx.reg_alloc.ScratchGpr(HostLoc::RAX);
ctx.reg_alloc.ScratchGpr(HostLoc::RBX);
ctx.reg_alloc.ScratchGpr(HostLoc::RCX);
ctx.reg_alloc.ScratchGpr(HostLoc::RDX);
return ctx.reg_alloc.UseXmm(args[2]);
} else {
ctx.reg_alloc.ScratchGpr(HostLoc::RAX);
return ctx.reg_alloc.UseGpr(args[2]);
}
}();
const Xbyak::Reg64 vaddr = ctx.reg_alloc.UseGpr(args[1]);
const Xbyak::Reg32 status = ctx.reg_alloc.ScratchGpr().cvt32();
const Xbyak::Reg64 tmp = ctx.reg_alloc.ScratchGpr();
const auto wrapped_fn = exclusive_write_fallbacks[std::make_tuple(ordered, bitsize, vaddr.getIdx(), value.getIdx())];
EmitExclusiveLock(code, conf, tmp, eax);
SharedLabel end = GenSharedLabel();
code.mov(tmp, mcl::bit_cast<u64>(GetExclusiveMonitorAddressPointer(conf.global_monitor, conf.processor_id)));
code.mov(status, u32(1));
code.cmp(code.byte[r15 + offsetof(AxxJitState, exclusive_state)], u8(0));
code.je(*end, code.T_NEAR);
code.cmp(qword[tmp], vaddr);
code.jne(*end, code.T_NEAR);
EmitExclusiveTestAndClear(code, conf, vaddr, tmp, rax);
code.mov(code.byte[r15 + offsetof(AxxJitState, exclusive_state)], u8(0));
code.mov(tmp, mcl::bit_cast<u64>(GetExclusiveMonitorValuePointer(conf.global_monitor, conf.processor_id)));
if constexpr (bitsize == 128) {
code.mov(rax, qword[tmp + 0]);
code.mov(rdx, qword[tmp + 8]);
if (code.HasHostFeature(HostFeature::SSE41)) {
code.movq(rbx, value);
code.pextrq(rcx, value, 1);
} else {
code.movaps(xmm0, value);
code.movq(rbx, xmm0);
code.punpckhqdq(xmm0, xmm0);
code.movq(rcx, xmm0);
}
} else {
EmitReadMemoryMov<bitsize>(code, rax.getIdx(), tmp, false);
}
const auto fastmem_marker = ShouldFastmem(ctx, inst);
if (fastmem_marker) {
SharedLabel abort = GenSharedLabel();
bool require_abort_handling = false;
const auto dest_ptr = EmitFastmemVAddr(code, ctx, *abort, vaddr, require_abort_handling, tmp);
const auto location = code.getCurr();
if constexpr (bitsize == 128) {
code.lock();
code.cmpxchg16b(ptr[dest_ptr]);
} else {
switch (bitsize) {
case 8:
code.lock();
code.cmpxchg(code.byte[dest_ptr], value.cvt8());
break;
case 16:
code.lock();
code.cmpxchg(word[dest_ptr], value.cvt16());
break;
case 32:
code.lock();
code.cmpxchg(dword[dest_ptr], value.cvt32());
break;
case 64:
code.lock();
code.cmpxchg(qword[dest_ptr], value.cvt64());
break;
default:
UNREACHABLE();
}
}
code.setnz(status.cvt8());
ctx.deferred_emits.emplace_back([=, this] {
code.L(*abort);
code.call(wrapped_fn);
fastmem_patch_info.emplace(
mcl::bit_cast<u64>(location),
FastmemPatchInfo{
mcl::bit_cast<u64>(code.getCurr()),
mcl::bit_cast<u64>(wrapped_fn),
*fastmem_marker,
conf.recompile_on_exclusive_fastmem_failure,
});
code.cmp(al, 0);
code.setz(status.cvt8());
code.movzx(status.cvt32(), status.cvt8());
code.jmp(*end, code.T_NEAR);
});
} else {
code.call(wrapped_fn);
code.cmp(al, 0);
code.setz(status.cvt8());
code.movzx(status.cvt32(), status.cvt8());
}
code.L(*end);
EmitExclusiveUnlock(code, conf, tmp, eax);
ctx.reg_alloc.DefineValue(inst, status);
EmitCheckMemoryAbort(ctx, inst);
}
#undef AxxEmitX64
#undef AxxEmitContext
#undef AxxJitState
#undef AxxUserConfig