dynarmic/src/common/fp/op/FPRecipEstimate.cpp

101 lines
3.4 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2018 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include <tuple>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/fp/fpcr.h"
#include "common/fp/fpsr.h"
#include "common/fp/info.h"
#include "common/fp/op/FPRecipEstimate.h"
#include "common/fp/process_exception.h"
#include "common/fp/process_nan.h"
#include "common/fp/unpacked.h"
#include "common/math_util.h"
namespace Dynarmic::FP {
template<typename FPT>
FPT FPRecipEstimate(FPT op, FPCR fpcr, FPSR& fpsr) {
FPType type;
bool sign;
FPUnpacked value;
std::tie(type, sign, value) = FPUnpack<FPT>(op, fpcr, fpsr);
if (type == FPType::SNaN || type == FPType::QNaN) {
return FPProcessNaN(type, op, fpcr, fpsr);
}
if (type == FPType::Infinity) {
return FPT(FPInfo<FPT>::Zero(sign));
}
if (type == FPType::Zero) {
FPProcessException(FPExc::DivideByZero, fpcr, fpsr);
return FPT(FPInfo<FPT>::Infinity(sign));
}
if (value.exponent < FPInfo<FPT>::exponent_min - 2) {
const bool overflow_to_inf = [&]{
switch (fpcr.RMode()) {
case RoundingMode::ToNearest_TieEven:
return true;
case RoundingMode::TowardsPlusInfinity:
return !sign;
case RoundingMode::TowardsMinusInfinity:
return sign;
case RoundingMode::TowardsZero:
return false;
default:
UNREACHABLE();
}
return false;
}();
FPProcessException(FPExc::Overflow, fpcr, fpsr);
FPProcessException(FPExc::Inexact, fpcr, fpsr);
return overflow_to_inf ? FPT(FPInfo<FPT>::Infinity(sign)) : FPT(FPInfo<FPT>::MaxNormal(sign));
}
if ((fpcr.FZ() && !std::is_same_v<FPT, u16>) || (fpcr.FZ16() && std::is_same_v<FPT, u16>)) {
if (value.exponent >= -FPInfo<FPT>::exponent_min) {
fpsr.UFC(true);
return FPT(FPInfo<FPT>::Zero(sign));
}
}
const u64 scaled = value.mantissa >> (normalized_point_position - 8);
u64 estimate = static_cast<u64>(Common::RecipEstimate(scaled)) << (FPInfo<FPT>::explicit_mantissa_width - 8);
int result_exponent = -(value.exponent + 1);
if (result_exponent < FPInfo<FPT>::exponent_min) {
switch (result_exponent) {
case (FPInfo<FPT>::exponent_min - 1):
estimate |= FPInfo<FPT>::implicit_leading_bit;
estimate >>= 1;
break;
case (FPInfo<FPT>::exponent_min - 2):
estimate |= FPInfo<FPT>::implicit_leading_bit;
estimate >>= 2;
result_exponent++;
break;
default:
UNREACHABLE();
}
}
const FPT bits_sign = FPT(FPInfo<FPT>::Zero(sign));
const FPT bits_exponent = static_cast<FPT>(result_exponent + FPInfo<FPT>::exponent_bias);
const FPT bits_mantissa = static_cast<FPT>(estimate);
return FPT((bits_exponent << FPInfo<FPT>::explicit_mantissa_width) | (bits_mantissa & FPInfo<FPT>::mantissa_mask) | bits_sign);
}
template u16 FPRecipEstimate<u16>(u16 op, FPCR fpcr, FPSR& fpsr);
template u32 FPRecipEstimate<u32>(u32 op, FPCR fpcr, FPSR& fpsr);
template u64 FPRecipEstimate<u64>(u64 op, FPCR fpcr, FPSR& fpsr);
} // namespace Dynarmic::FP