mirror of
https://github.com/azahar-emu/soundtouch
synced 2025-11-07 07:30:02 +01:00
- Redesigned quickseek algorithm for improved sound quality in quickseek mode
- Adaptive integer divider scaling for improved sound quality when using integer processing - Version 1.9.1-pre
This commit is contained in:
parent
c9507ff7f1
commit
db04025351
16
README.html
16
README.html
@ -13,7 +13,7 @@
|
||||
</head>
|
||||
<body class="normal">
|
||||
<hr>
|
||||
<h1>SoundTouch audio processing library v1.9</h1>
|
||||
<h1>SoundTouch audio processing library v1.9.1-pre</h1>
|
||||
<p class="normal">SoundTouch library Copyright © Olli Parviainen 2001-2015</p>
|
||||
<hr>
|
||||
<h2>1. Introduction </h2>
|
||||
@ -355,8 +355,8 @@ computation burden</td>
|
||||
<h3>3.5 Performance Optimizations </h3>
|
||||
<p><strong>General optimizations:</strong></p>
|
||||
<p>The time-stretch routine has a 'quick' mode that substantially
|
||||
speeds up the algorithm but may degrade the sound quality by a small
|
||||
amount. This mode is activated by calling SoundTouch::setSetting()
|
||||
speeds up the algorithm but may slightly compromise the sound quality.
|
||||
This mode is activated by calling SoundTouch::setSetting()
|
||||
function with parameter id of SETTING_USE_QUICKSEEK and value
|
||||
"1", i.e. </p>
|
||||
<blockquote>
|
||||
@ -566,6 +566,13 @@ this corresponds to lowering the pitch by -0.318 semitones:</p>
|
||||
<hr>
|
||||
<h2>5. Change History</h2>
|
||||
<h3>5.1. SoundTouch library Change History </h3>
|
||||
<p><b>1.9.1-pre:</b></p>
|
||||
<ul>
|
||||
<li>Improved SoundTouch::flush() function so that it returns precisely the desired amount of samples for exact output duration control</li>
|
||||
<li>Redesigned quickseek algorithm for improved sound quality when using the quickseek mode. The new quickseek algorithm can find 99% as good results as the default full-scan mode.</li>
|
||||
<li>Added adaptive integer divider scaling for improved sound quality when using integer processing algorithm
|
||||
</li>
|
||||
</ul>
|
||||
<p><b>1.9:</b></p>
|
||||
<ul>
|
||||
<li>Added support for parallel computation support via OpenMP primitives for better performance in multicore systems.
|
||||
@ -852,7 +859,8 @@ General Public License for more details.</p>
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA</p>
|
||||
<hr><!--
|
||||
$Id$
-->
|
||||
$Id$
|
||||
-->
|
||||
<p>
|
||||
<i>README.html file updated in May-2015</i></p>
|
||||
</body>
|
||||
|
||||
@ -79,10 +79,10 @@ namespace soundtouch
|
||||
{
|
||||
|
||||
/// Soundtouch library version string
|
||||
#define SOUNDTOUCH_VERSION "1.9.0"
|
||||
#define SOUNDTOUCH_VERSION "1.9.1-pre"
|
||||
|
||||
/// SoundTouch library version id
|
||||
#define SOUNDTOUCH_VERSION_ID (10900)
|
||||
#define SOUNDTOUCH_VERSION_ID (10901)
|
||||
|
||||
//
|
||||
// Available setting IDs for the 'setSetting' & 'get_setting' functions:
|
||||
|
||||
@ -63,7 +63,7 @@ using namespace soundtouch;
|
||||
*****************************************************************************/
|
||||
|
||||
// Table for the hierarchical mixing position seeking algorithm
|
||||
static const short _scanOffsets[5][24]={
|
||||
const short _scanOffsets[5][24]={
|
||||
{ 124, 186, 248, 310, 372, 434, 496, 558, 620, 682, 744, 806,
|
||||
868, 930, 992, 1054, 1116, 1178, 1240, 1302, 1364, 1426, 1488, 0},
|
||||
{-100, -75, -50, -25, 25, 50, 75, 100, 0, 0, 0, 0,
|
||||
@ -94,7 +94,9 @@ TDStretch::TDStretch() : FIFOProcessor(&outputBuffer)
|
||||
bAutoSeqSetting = true;
|
||||
bAutoSeekSetting = true;
|
||||
|
||||
// outDebt = 0;
|
||||
maxnorm = 0;
|
||||
maxnormf = 1e8;
|
||||
|
||||
skipFract = 0;
|
||||
|
||||
tempo = 1.0f;
|
||||
@ -282,7 +284,6 @@ inline void TDStretch::overlap(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput, ui
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Seeks for the optimal overlap-mixing position. The 'stereo' version of the
|
||||
// routine
|
||||
//
|
||||
@ -336,6 +337,11 @@ int TDStretch::seekBestOverlapPositionFull(const SAMPLETYPE *refPos)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
|
||||
adaptNormalizer();
|
||||
#endif
|
||||
|
||||
// clear cross correlation routine state if necessary (is so e.g. in MMX routines).
|
||||
clearCrossCorrState();
|
||||
|
||||
@ -343,64 +349,161 @@ int TDStretch::seekBestOverlapPositionFull(const SAMPLETYPE *refPos)
|
||||
}
|
||||
|
||||
|
||||
// Seeks for the optimal overlap-mixing position. The 'stereo' version of the
|
||||
// routine
|
||||
// Quick seek algorithm for improved runtime-performance: First roughly scans through the
|
||||
// correlation area, and then scan surroundings of two best preliminary correlation candidates
|
||||
// with improved precision
|
||||
//
|
||||
// The best position is determined as the position where the two overlapped
|
||||
// sample sequences are 'most alike', in terms of the highest cross-correlation
|
||||
// value over the overlapping period
|
||||
// Based on testing:
|
||||
// - This algorithm gives on average 99% as good match as the full algorith
|
||||
// - this quick seek algorithm finds the best match on ~90% of cases
|
||||
// - on those 10% of cases when this algorithm doesn't find best match,
|
||||
// it still finds on average ~90% match vs. the best possible match
|
||||
int TDStretch::seekBestOverlapPositionQuick(const SAMPLETYPE *refPos)
|
||||
{
|
||||
int j;
|
||||
#define _MIN(a, b) (((a) < (b)) ? (a) : (b))
|
||||
#define SCANSTEP 16
|
||||
#define SCANWIND 8
|
||||
|
||||
int bestOffs;
|
||||
double bestCorr, corr;
|
||||
int scanCount, corrOffset, tempOffset;
|
||||
int i;
|
||||
int bestOffs2;
|
||||
float bestCorr, corr;
|
||||
float bestCorr2;
|
||||
double norm;
|
||||
|
||||
// note: 'float' types used in this function in case that the platform would need to use software-fp
|
||||
|
||||
bestCorr = FLT_MIN;
|
||||
bestOffs = _scanOffsets[0][0];
|
||||
corrOffset = 0;
|
||||
tempOffset = 0;
|
||||
bestOffs = SCANWIND;
|
||||
bestCorr2 = FLT_MIN;
|
||||
bestOffs2 = 0;
|
||||
|
||||
// Scans for the best correlation value using four-pass hierarchical search.
|
||||
int best = 0;
|
||||
|
||||
// Scans for the best correlation value by testing each possible position
|
||||
// over the permitted range. Look for two best matches on the first pass to
|
||||
// increase possibility of ideal match.
|
||||
//
|
||||
// The look-up table 'scans' has hierarchical position adjusting steps.
|
||||
// In first pass the routine searhes for the highest correlation with
|
||||
// relatively coarse steps, then rescans the neighbourhood of the highest
|
||||
// correlation with better resolution and so on.
|
||||
for (scanCount = 0;scanCount < 4; scanCount ++)
|
||||
// Begin from "SCANSTEP" instead of SCANWIND to make the calculation
|
||||
// catch the 'middlepoint' of seekLength vector as that's the a-priori
|
||||
// expected best match position
|
||||
//
|
||||
// Roughly:
|
||||
// - 15% of cases find best result directly on the first round,
|
||||
// - 75% cases find better match on 2nd round around the best match from 1st round
|
||||
// - 10% cases find better match on 2nd round around the 2nd-best-match from 1st round
|
||||
for (i = SCANSTEP; i < seekLength - SCANWIND - 1; i += SCANSTEP)
|
||||
{
|
||||
j = 0;
|
||||
while (_scanOffsets[scanCount][j])
|
||||
// Calculates correlation value for the mixing position corresponding
|
||||
// to 'i'
|
||||
corr = (float)calcCrossCorr(refPos + channels*i, pMidBuffer, norm);
|
||||
// heuristic rule to slightly favour values close to mid of the seek range
|
||||
float tmp = (float)(2 * i - seekLength - 1) / (float)seekLength;
|
||||
corr = ((corr + 0.1f) * (1.0f - 0.25f * tmp * tmp));
|
||||
|
||||
// Checks for the highest correlation value
|
||||
if (corr > bestCorr)
|
||||
{
|
||||
double norm;
|
||||
tempOffset = corrOffset + _scanOffsets[scanCount][j];
|
||||
if (tempOffset >= seekLength) break;
|
||||
// found new best match. keep the previous best as 2nd best match
|
||||
bestCorr2 = bestCorr;
|
||||
bestOffs2 = bestOffs;
|
||||
bestCorr = corr;
|
||||
bestOffs = i;
|
||||
}
|
||||
else if (corr > bestCorr2)
|
||||
{
|
||||
// not new best, but still new 2nd best match
|
||||
bestCorr2 = corr;
|
||||
bestOffs2 = i;
|
||||
}
|
||||
}
|
||||
|
||||
// Scans surroundings of the found best match with small stepping
|
||||
int end = _MIN(bestOffs + SCANWIND + 1, seekLength);
|
||||
for (i = bestOffs - SCANWIND; i < end; i++)
|
||||
{
|
||||
if (i == bestOffs) continue; // this offset already calculated, thus skip
|
||||
|
||||
// Calculates correlation value for the mixing position corresponding
|
||||
// to 'tempOffset'
|
||||
corr = (double)calcCrossCorr(refPos + channels * tempOffset, pMidBuffer, norm);
|
||||
// to 'i'
|
||||
corr = (float)calcCrossCorr(refPos + channels*i, pMidBuffer, norm);
|
||||
// heuristic rule to slightly favour values close to mid of the range
|
||||
double tmp = (double)(2 * tempOffset - seekLength) / seekLength;
|
||||
corr = ((corr + 0.1) * (1.0 - 0.25 * tmp * tmp));
|
||||
float tmp = (float)(2 * i - seekLength - 1) / (float)seekLength;
|
||||
corr = ((corr + 0.1f) * (1.0f - 0.25f * tmp * tmp));
|
||||
|
||||
// Checks for the highest correlation value
|
||||
if (corr > bestCorr)
|
||||
{
|
||||
bestCorr = corr;
|
||||
bestOffs = tempOffset;
|
||||
bestOffs = i;
|
||||
best = 1;
|
||||
}
|
||||
j ++;
|
||||
}
|
||||
corrOffset = bestOffs;
|
||||
|
||||
// Scans surroundings of the 2nd best match with small stepping
|
||||
end = _MIN(bestOffs2 + SCANWIND + 1, seekLength);
|
||||
for (i = bestOffs2 - SCANWIND; i < end; i++)
|
||||
{
|
||||
if (i == bestOffs2) continue; // this offset already calculated, thus skip
|
||||
|
||||
// Calculates correlation value for the mixing position corresponding
|
||||
// to 'i'
|
||||
corr = (float)calcCrossCorr(refPos + channels*i, pMidBuffer, norm);
|
||||
// heuristic rule to slightly favour values close to mid of the range
|
||||
float tmp = (float)(2 * i - seekLength - 1) / (float)seekLength;
|
||||
corr = ((corr + 0.1f) * (1.0f - 0.25f * tmp * tmp));
|
||||
|
||||
// Checks for the highest correlation value
|
||||
if (corr > bestCorr)
|
||||
{
|
||||
bestCorr = corr;
|
||||
bestOffs = i;
|
||||
best = 2;
|
||||
}
|
||||
}
|
||||
|
||||
// clear cross correlation routine state if necessary (is so e.g. in MMX routines).
|
||||
clearCrossCorrState();
|
||||
|
||||
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
|
||||
adaptNormalizer();
|
||||
#endif
|
||||
|
||||
return bestOffs;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/// For integer algorithm: adapt normalization factor divider with music so that
|
||||
/// it'll not be pessimistically restrictive that can degrade quality on quieter sections
|
||||
/// yet won't cause integer overflows either
|
||||
void TDStretch::adaptNormalizer()
|
||||
{
|
||||
// Do not adapt normalizer over too silent sequences to avoid averaging filter depleting to
|
||||
// too low values during pauses in music
|
||||
if ((maxnorm > 1000) || (maxnormf > 40000000))
|
||||
{
|
||||
//norm averaging filter
|
||||
maxnormf = 0.9f * maxnormf + 0.1f * (float)maxnorm;
|
||||
|
||||
if ((maxnorm > 800000000) && (overlapDividerBitsNorm < 16))
|
||||
{
|
||||
// large values, so increase divider
|
||||
overlapDividerBitsNorm++;
|
||||
if (maxnorm > 1600000000) overlapDividerBitsNorm++; // extra large value => extra increase
|
||||
}
|
||||
else if ((maxnormf < 1000000) && (overlapDividerBitsNorm > 0))
|
||||
{
|
||||
// extra small values, decrease divider
|
||||
overlapDividerBitsNorm--;
|
||||
}
|
||||
}
|
||||
|
||||
maxnorm = 0;
|
||||
}
|
||||
|
||||
|
||||
/// clear cross correlation routine state if necessary
|
||||
void TDStretch::clearCrossCorrState()
|
||||
{
|
||||
@ -422,7 +525,7 @@ void TDStretch::calcSeqParameters()
|
||||
#define AUTOSEQ_K ((AUTOSEQ_AT_MAX - AUTOSEQ_AT_MIN) / (AUTOSEQ_TEMPO_TOP - AUTOSEQ_TEMPO_LOW))
|
||||
#define AUTOSEQ_C (AUTOSEQ_AT_MIN - (AUTOSEQ_K) * (AUTOSEQ_TEMPO_LOW))
|
||||
|
||||
// seek-window-ms setting values at above low & top tempo
|
||||
// seek-window-ms setting values at above low & top tempoq
|
||||
#define AUTOSEEK_AT_MIN 25.0
|
||||
#define AUTOSEEK_AT_MAX 15.0
|
||||
#define AUTOSEEK_K ((AUTOSEEK_AT_MAX - AUTOSEEK_AT_MIN) / (AUTOSEQ_TEMPO_TOP - AUTOSEQ_TEMPO_LOW))
|
||||
@ -736,13 +839,15 @@ void TDStretch::calculateOverlapLength(int aoverlapMs)
|
||||
// calculate overlap length so that it's power of 2 - thus it's easy to do
|
||||
// integer division by right-shifting. Term "-1" at end is to account for
|
||||
// the extra most significatnt bit left unused in result by signed multiplication
|
||||
overlapDividerBits = _getClosest2Power((sampleRate * aoverlapMs) / 1000.0) - 1;
|
||||
if (overlapDividerBits > 9) overlapDividerBits = 9;
|
||||
if (overlapDividerBits < 3) overlapDividerBits = 3;
|
||||
newOvl = (int)pow(2.0, (int)overlapDividerBits + 1); // +1 => account for -1 above
|
||||
overlapDividerBitsPure = _getClosest2Power((sampleRate * aoverlapMs) / 1000.0) - 1;
|
||||
if (overlapDividerBitsPure > 9) overlapDividerBitsPure = 9;
|
||||
if (overlapDividerBitsPure < 3) overlapDividerBitsPure = 3;
|
||||
newOvl = (int)pow(2.0, (int)overlapDividerBitsPure + 1); // +1 => account for -1 above
|
||||
|
||||
acceptNewOverlapLength(newOvl);
|
||||
|
||||
overlapDividerBitsNorm = overlapDividerBitsPure;
|
||||
|
||||
// calculate sloping divider so that crosscorrelation operation won't
|
||||
// overflow 32-bit register. Max. sum of the crosscorrelation sum without
|
||||
// divider would be 2^30*(N^3-N)/3, where N = overlap length
|
||||
@ -750,10 +855,10 @@ void TDStretch::calculateOverlapLength(int aoverlapMs)
|
||||
}
|
||||
|
||||
|
||||
double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare, double &norm) const
|
||||
double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare, double &norm)
|
||||
{
|
||||
long corr;
|
||||
long lnorm;
|
||||
unsigned long lnorm;
|
||||
int i;
|
||||
|
||||
corr = lnorm = 0;
|
||||
@ -763,15 +868,19 @@ double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare, do
|
||||
for (i = 0; i < channels * overlapLength; i += 4)
|
||||
{
|
||||
corr += (mixingPos[i] * compare[i] +
|
||||
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBits; // notice: do intermediate division here to avoid integer overflow
|
||||
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBitsNorm; // notice: do intermediate division here to avoid integer overflow
|
||||
corr += (mixingPos[i + 2] * compare[i + 2] +
|
||||
mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBits;
|
||||
mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBitsNorm;
|
||||
lnorm += (mixingPos[i] * mixingPos[i] +
|
||||
mixingPos[i + 1] * mixingPos[i + 1]) >> overlapDividerBits; // notice: do intermediate division here to avoid integer overflow
|
||||
mixingPos[i + 1] * mixingPos[i + 1]) >> overlapDividerBitsNorm; // notice: do intermediate division here to avoid integer overflow
|
||||
lnorm += (mixingPos[i + 2] * mixingPos[i + 2] +
|
||||
mixingPos[i + 3] * mixingPos[i + 3]) >> overlapDividerBits;
|
||||
mixingPos[i + 3] * mixingPos[i + 3]) >> overlapDividerBitsNorm;
|
||||
}
|
||||
|
||||
if (lnorm > maxnorm)
|
||||
{
|
||||
maxnorm = lnorm;
|
||||
}
|
||||
// Normalize result by dividing by sqrt(norm) - this step is easiest
|
||||
// done using floating point operation
|
||||
norm = (double)lnorm;
|
||||
@ -780,17 +889,17 @@ double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare, do
|
||||
|
||||
|
||||
/// Update cross-correlation by accumulating "norm" coefficient by previously calculated value
|
||||
double TDStretch::calcCrossCorrAccumulate(const short *mixingPos, const short *compare, double &norm) const
|
||||
double TDStretch::calcCrossCorrAccumulate(const short *mixingPos, const short *compare, double &norm)
|
||||
{
|
||||
long corr;
|
||||
long lnorm;
|
||||
unsigned long lnorm;
|
||||
int i;
|
||||
|
||||
// cancel first normalizer tap from previous round
|
||||
lnorm = 0;
|
||||
for (i = 1; i <= channels; i ++)
|
||||
{
|
||||
lnorm -= (mixingPos[-i] * mixingPos[-i]) >> overlapDividerBits;
|
||||
lnorm -= (mixingPos[-i] * mixingPos[-i]) >> overlapDividerBitsNorm;
|
||||
}
|
||||
|
||||
corr = 0;
|
||||
@ -800,18 +909,23 @@ double TDStretch::calcCrossCorrAccumulate(const short *mixingPos, const short *c
|
||||
for (i = 0; i < channels * overlapLength; i += 4)
|
||||
{
|
||||
corr += (mixingPos[i] * compare[i] +
|
||||
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBits; // notice: do intermediate division here to avoid integer overflow
|
||||
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBitsNorm; // notice: do intermediate division here to avoid integer overflow
|
||||
corr += (mixingPos[i + 2] * compare[i + 2] +
|
||||
mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBits;
|
||||
mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBitsNorm;
|
||||
}
|
||||
|
||||
// update normalizer with last samples of this round
|
||||
for (int j = 0; j < channels; j ++)
|
||||
{
|
||||
i --;
|
||||
lnorm += (mixingPos[i] * mixingPos[i]) >> overlapDividerBits;
|
||||
lnorm += (mixingPos[i] * mixingPos[i]) >> overlapDividerBitsNorm;
|
||||
}
|
||||
|
||||
norm += (double)lnorm;
|
||||
if (norm > maxnorm)
|
||||
{
|
||||
maxnorm = (unsigned long)norm;
|
||||
}
|
||||
|
||||
// Normalize result by dividing by sqrt(norm) - this step is easiest
|
||||
// done using floating point operation
|
||||
@ -896,7 +1010,7 @@ void TDStretch::calculateOverlapLength(int overlapInMsec)
|
||||
|
||||
|
||||
/// Calculate cross-correlation
|
||||
double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare, double &anorm) const
|
||||
double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare, double &anorm)
|
||||
{
|
||||
double corr;
|
||||
double norm;
|
||||
@ -927,7 +1041,7 @@ double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare, do
|
||||
|
||||
|
||||
/// Update cross-correlation by accumulating "norm" coefficient by previously calculated value
|
||||
double TDStretch::calcCrossCorrAccumulate(const float *mixingPos, const float *compare, double &norm) const
|
||||
double TDStretch::calcCrossCorrAccumulate(const float *mixingPos, const float *compare, double &norm)
|
||||
{
|
||||
double corr;
|
||||
int i;
|
||||
|
||||
@ -112,39 +112,46 @@ class TDStretch : public FIFOProcessor
|
||||
protected:
|
||||
int channels;
|
||||
int sampleReq;
|
||||
double tempo;
|
||||
|
||||
SAMPLETYPE *pMidBuffer;
|
||||
SAMPLETYPE *pMidBufferUnaligned;
|
||||
int overlapLength;
|
||||
int seekLength;
|
||||
int seekWindowLength;
|
||||
int overlapDividerBits;
|
||||
int overlapDividerBitsNorm;
|
||||
int overlapDividerBitsPure;
|
||||
int slopingDivider;
|
||||
double nominalSkip;
|
||||
double skipFract;
|
||||
FIFOSampleBuffer outputBuffer;
|
||||
FIFOSampleBuffer inputBuffer;
|
||||
bool bQuickSeek;
|
||||
|
||||
int sampleRate;
|
||||
int sequenceMs;
|
||||
int seekWindowMs;
|
||||
int overlapMs;
|
||||
|
||||
unsigned long maxnorm;
|
||||
float maxnormf;
|
||||
|
||||
double tempo;
|
||||
double nominalSkip;
|
||||
double skipFract;
|
||||
|
||||
bool bQuickSeek;
|
||||
bool bAutoSeqSetting;
|
||||
bool bAutoSeekSetting;
|
||||
|
||||
SAMPLETYPE *pMidBuffer;
|
||||
SAMPLETYPE *pMidBufferUnaligned;
|
||||
|
||||
FIFOSampleBuffer outputBuffer;
|
||||
FIFOSampleBuffer inputBuffer;
|
||||
|
||||
void acceptNewOverlapLength(int newOverlapLength);
|
||||
|
||||
virtual void clearCrossCorrState();
|
||||
void calculateOverlapLength(int overlapMs);
|
||||
|
||||
virtual double calcCrossCorr(const SAMPLETYPE *mixingPos, const SAMPLETYPE *compare, double &norm) const;
|
||||
virtual double calcCrossCorrAccumulate(const SAMPLETYPE *mixingPos, const SAMPLETYPE *compare, double &norm) const;
|
||||
virtual double calcCrossCorr(const SAMPLETYPE *mixingPos, const SAMPLETYPE *compare, double &norm);
|
||||
virtual double calcCrossCorrAccumulate(const SAMPLETYPE *mixingPos, const SAMPLETYPE *compare, double &norm);
|
||||
|
||||
virtual int seekBestOverlapPositionFull(const SAMPLETYPE *refPos);
|
||||
virtual int seekBestOverlapPositionQuick(const SAMPLETYPE *refPos);
|
||||
int seekBestOverlapPosition(const SAMPLETYPE *refPos);
|
||||
virtual int seekBestOverlapPosition(const SAMPLETYPE *refPos);
|
||||
|
||||
virtual void overlapStereo(SAMPLETYPE *output, const SAMPLETYPE *input) const;
|
||||
virtual void overlapMono(SAMPLETYPE *output, const SAMPLETYPE *input) const;
|
||||
@ -154,6 +161,8 @@ protected:
|
||||
void overlap(SAMPLETYPE *output, const SAMPLETYPE *input, uint ovlPos) const;
|
||||
|
||||
void calcSeqParameters();
|
||||
void adaptNormalizer();
|
||||
|
||||
|
||||
/// Changes the tempo of the given sound samples.
|
||||
/// Returns amount of samples returned in the "output" buffer.
|
||||
@ -249,8 +258,8 @@ public:
|
||||
class TDStretchMMX : public TDStretch
|
||||
{
|
||||
protected:
|
||||
double calcCrossCorr(const short *mixingPos, const short *compare, double &norm) const;
|
||||
double calcCrossCorrAccumulate(const short *mixingPos, const short *compare, double &norm) const;
|
||||
double calcCrossCorr(const short *mixingPos, const short *compare, double &norm);
|
||||
double calcCrossCorrAccumulate(const short *mixingPos, const short *compare, double &norm);
|
||||
virtual void overlapStereo(short *output, const short *input) const;
|
||||
virtual void clearCrossCorrState();
|
||||
};
|
||||
@ -262,8 +271,8 @@ public:
|
||||
class TDStretchSSE : public TDStretch
|
||||
{
|
||||
protected:
|
||||
double calcCrossCorr(const float *mixingPos, const float *compare, double &norm) const;
|
||||
double calcCrossCorrAccumulate(const float *mixingPos, const float *compare, double &norm) const;
|
||||
double calcCrossCorr(const float *mixingPos, const float *compare, double &norm);
|
||||
double calcCrossCorrAccumulate(const float *mixingPos, const float *compare, double &norm);
|
||||
};
|
||||
|
||||
#endif /// SOUNDTOUCH_ALLOW_SSE
|
||||
|
||||
@ -68,7 +68,7 @@ using namespace soundtouch;
|
||||
|
||||
|
||||
// Calculates cross correlation of two buffers
|
||||
double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2, double &dnorm) const
|
||||
double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2, double &dnorm)
|
||||
{
|
||||
const __m64 *pVec1, *pVec2;
|
||||
__m64 shifter;
|
||||
@ -79,7 +79,7 @@ double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2, double &d
|
||||
pVec1 = (__m64*)pV1;
|
||||
pVec2 = (__m64*)pV2;
|
||||
|
||||
shifter = _m_from_int(overlapDividerBits);
|
||||
shifter = _m_from_int(overlapDividerBitsNorm);
|
||||
normaccu = accu = _mm_setzero_si64();
|
||||
|
||||
// Process 4 parallel sets of 2 * stereo samples or 4 * mono samples
|
||||
@ -123,6 +123,11 @@ double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2, double &d
|
||||
// Clear MMS state
|
||||
_m_empty();
|
||||
|
||||
if (norm > (long)maxnorm)
|
||||
{
|
||||
maxnorm = norm;
|
||||
}
|
||||
|
||||
// Normalize result by dividing by sqrt(norm) - this step is easiest
|
||||
// done using floating point operation
|
||||
dnorm = (double)norm;
|
||||
@ -134,7 +139,7 @@ double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2, double &d
|
||||
|
||||
|
||||
/// Update cross-correlation by accumulating "norm" coefficient by previously calculated value
|
||||
double TDStretchMMX::calcCrossCorrAccumulate(const short *pV1, const short *pV2, double &dnorm) const
|
||||
double TDStretchMMX::calcCrossCorrAccumulate(const short *pV1, const short *pV2, double &dnorm)
|
||||
{
|
||||
const __m64 *pVec1, *pVec2;
|
||||
__m64 shifter;
|
||||
@ -146,13 +151,13 @@ double TDStretchMMX::calcCrossCorrAccumulate(const short *pV1, const short *pV2,
|
||||
lnorm = 0;
|
||||
for (i = 1; i <= channels; i ++)
|
||||
{
|
||||
lnorm -= (pV1[-i] * pV1[-i]) >> overlapDividerBits;
|
||||
lnorm -= (pV1[-i] * pV1[-i]) >> overlapDividerBitsNorm;
|
||||
}
|
||||
|
||||
pVec1 = (__m64*)pV1;
|
||||
pVec2 = (__m64*)pV2;
|
||||
|
||||
shifter = _m_from_int(overlapDividerBits);
|
||||
shifter = _m_from_int(overlapDividerBitsNorm);
|
||||
accu = _mm_setzero_si64();
|
||||
|
||||
// Process 4 parallel sets of 2 * stereo samples or 4 * mono samples
|
||||
@ -191,10 +196,15 @@ double TDStretchMMX::calcCrossCorrAccumulate(const short *pV1, const short *pV2,
|
||||
pV1 = (short *)pVec1;
|
||||
for (int j = 1; j <= channels; j ++)
|
||||
{
|
||||
lnorm += (pV1[-j] * pV1[-j]) >> overlapDividerBits;
|
||||
lnorm += (pV1[-j] * pV1[-j]) >> overlapDividerBitsNorm;
|
||||
}
|
||||
dnorm += (double)lnorm;
|
||||
|
||||
if (lnorm > (long)maxnorm)
|
||||
{
|
||||
maxnorm = lnorm;
|
||||
}
|
||||
|
||||
// Normalize result by dividing by sqrt(norm) - this step is easiest
|
||||
// done using floating point operation
|
||||
return (double)corr / sqrt((dnorm < 1e-9) ? 1.0 : dnorm);
|
||||
@ -233,7 +243,7 @@ void TDStretchMMX::overlapStereo(short *output, const short *input) const
|
||||
|
||||
// Overlaplength-division by shifter. "+1" is to account for "-1" deduced in
|
||||
// overlapDividerBits calculation earlier.
|
||||
shifter = _m_from_int(overlapDividerBits + 1);
|
||||
shifter = _m_from_int(overlapDividerBitsPure + 1);
|
||||
|
||||
for (i = 0; i < overlapLength / 4; i ++)
|
||||
{
|
||||
|
||||
@ -71,7 +71,7 @@ using namespace soundtouch;
|
||||
#include <math.h>
|
||||
|
||||
// Calculates cross correlation of two buffers
|
||||
double TDStretchSSE::calcCrossCorr(const float *pV1, const float *pV2, double &anorm) const
|
||||
double TDStretchSSE::calcCrossCorr(const float *pV1, const float *pV2, double &anorm)
|
||||
{
|
||||
int i;
|
||||
const float *pVec1;
|
||||
@ -183,7 +183,7 @@ double TDStretchSSE::calcCrossCorr(const float *pV1, const float *pV2, double &a
|
||||
|
||||
|
||||
|
||||
double TDStretchSSE::calcCrossCorrAccumulate(const float *pV1, const float *pV2, double &norm) const
|
||||
double TDStretchSSE::calcCrossCorrAccumulate(const float *pV1, const float *pV2, double &norm)
|
||||
{
|
||||
// call usual calcCrossCorr function because SSE does not show big benefit of
|
||||
// accumulating "norm" value, and also the "norm" rolling algorithm would get
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user